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Abstract We investigate two training-set methods: support vector ma-

chines (SVMs) and Kernel Regression (KR) for photometric redshift es-

timation with the data from the Sloan Digital Sky Survey Data Release 5

and Two Micron All Sky Survey databases. We probe the performances of

SVMs and KR for different input patterns. Our experiments show that the

more parameters considered, the accuracy doesn’t always increase, and only

when appropriate parameters chosen, the accuracy can improve. Moreover

for the two approaches, the best input pattern is different. With various

parameters as input, the optimal bandwidth is dissimilar for KR. The rms

errors of photometric redshifts based on SVM and KR methods, are less

than 0.03 and 0.02, respectively. Finally the strengths and weaknesses of

these techniques are summarized. Compared to other methods of estimat-

ing photometric redshifts, they show their superiorities, especially KR, in

terms of accuracy.

Key words: galaxies: distances and redshifts - galaxies: general - methods:

data analysis - techniques: photometric

1 INTRODUCTION

Photometric redshifts have been regarded as the most promising tool in studying the

formation and evolution of galaxies and the large scale structure of the universe, espe-

cially when the spectra of faint objects are difficult to obtain. The photometric redshift

technique translates observables such as flux and apparent color to the corresponding
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intrinsic properties of absolute luminosity and rest-frame color. The idea behind the

photometric redshift technique is to measure the redshifts of galaxies and AGN based on

available multi-wavelength photometry. Photometric redshift techniques can be traced

back to Baum (1962) who used nine medium-wide filters to detect the 4000Å in galaxies.

For example, the predicted redshft of the C10925 galaxies by this technique is z =0.19,

which agrees closely with the known spectroscopic value of z =0.192. Subsequent imple-

ments have been made by Koo (1985) using four broad-band photographic filters, Loh

and Spillar (1986) using CCDs along with 6 medium-band filters, and Xia et al. (2002)

using CCD photometries of BATC 15 medium-band filters. In the last two decades,

some well-defined statistical techniques have become increasingly popular in predicting

photometric redshifts.

There are two kinds of different photometric redshift approaches in the astronomical

literature: the template fitting whose templates are derived from synthetic (e.g. Bruzual,

Charlot 1993) or empirical template spectra (e.g. Coleman, Wu, Weedman 1980), and

the empirical training set method which constructs a direct empirical correlation between

color and redshifts. For template fitting one, according to the known redshift and galaxy

type, some templates are constructed in advance. By minimizing the standard χ2 to fit the

observed photometric data with a set of spectral templates, this method can be applied

beyond redshift limit. Although it is easy to implement, the accuracy of this approach

strongly depends on the templates. The essence of training set approach is to derive

a function between redshift and photometric data by using a large and representative

training set of galaxies for which both photometry and redshift are known, and then

use this function to estimate the redshifts of objects with unknown redshifts. In the

last few years, a large number of training set methods have been developed and used

(Way, Srivastava 2006). For example, linear or non-linear fitting (Brunner et al. 1997;

Wang, Bahcall, Turner 1998; Budavari et al. 2005); support vector machines (SVMs,

Wadadekar 2005); artificial neural network (ANNs, Firth, Lahav, Somerville 2003, Ball

et al. 2004, Collister, Lahav 2004, Vanzella et al. 2004, Li et al. 2006); instance-based

learning (Csabai et al. 2003; Ball et al. 2007).

The main advantage of SVMs over ANNs is that requires less effort in training, and

no danger of overfitting. SVMs simplify the decision of the optimal networks by replacing

the choice of architecture problem with one of choice of kernel (Wadadekar 2005). The

strength of instance-based learning methods is that they needn’t training, but implement

their predictions directly on (training) data that has been stored in the memory. In

general, they store all the training data in the memory during the learning phase, and

defer all the essential computation until the prediction phase. Kernel regression (KR)

belongs to the instance-based learning family. Based on the merits of SVMs and KR, we

adopt these two methods to predict photometric redshifts of galaxies.
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In this paper we explore two approaches: support vector machines (SVMs) and kernel

regression (KR) to estimate redshifts of galaxies with photometric data from SDSS and

2MASS databases. The structure of this paper is as follows: Section 2 illustrates the data

used in the study. Section 3 describes the principles of SVMs and KR. Section 4 gives

the results and discussion. Finally the conclusions are summarized in Section 5.

2 DATA

The data used in this paper is from Sloan Digital Sky Survey (SDSS) and Two Micron

All Sky Survey (2MASS) catalogs. The process of data preprocessing has been done by

VO DAS, which is a data accessing system of Virtual Observatory of China. The general

information of SDSS and 2MASS is shown as follows.

The Sloan Digital Sky Survey (SDSS, York et al. 2000) is an astronomical survey

project, which covers more than a quarter of the sky, to construct the first comprehensive

digital map of the universe in 3D, using a dedicated 2.5-meter telescope located on Apache

Point, New Mexico. In its first phase of operations, it has imaged 8,000 square degrees

in five bandpasses (u, g, r, i, z) and measured more than 675,000 galaxies, 90,000 quasars

and 185,000 stars. In its second stage, SDSS will carry out three new surveys in different

research areas, such as the nature of the universe, the origin of galaxies and quasars and

the formation and evolution of the Milky Way.

The Two Micron All Sky Survey (2MASS, Cutri et al. 2003) uses two highly-

automated 1.3-m telescopes, one is at Mt. Hopkins, Arizona and the other locates at

CTIO, Chile. Each telescope is equipped with a three-channel camera, each channel

consisting of a 256x256 array of HgCdTe detectors, capable of observing the sky simul-

taneously at J (1.25µm), H (1.65µm), and Ks (2.17µm), to a 3σ limiting sensitivity

of 17.1, 16.4 and 15.3mag in the three bands. Jarrett et al. (2000) has more detailed

information on the extended source catalog.

We select all galaxies with known spectra redshifts from SDSS Data Release 5, and

then cross-match the data with 2MASS extended source catalog within a search radius

of 3 times the SDSS positional errors. After cross-matching, we generate about 150,000

galaxies. From these galaxies, we selected the objects satisfying the following criteria: 1)

the spectroscopic redshift confidence must be equal to or greater than 0.95; 2) redshift

warning flag is 0; 3) r < 17.5. With these qualifications, a sample of 62,083 galaxies is

obtained. Table 1 describes the broadband filters and their wavelength range from SDSS

and 2MASS catalogs.
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Table 1 Survey filters and characteristics

Bandpass Survey λeff (Å) ∆λ(Å)

u SDSS 3551 600

g SDSS 4686 1400

r SDSS 6165 1400

i SDSS 7481 1500

z SDSS 8931 1200

J 2MASS 12500 1620

H 2MASS 16500 2510

Ks 2MASS 21700 2620

3 MODEL SELECTION

3.1 Support Vector Machines

The foundation of Support Vector Mahines (SVMs) has been developed by Vapnik (1995).

SVMs were developed to solve the classification problem, but recently they have been

extended to the domain of regression problems. The regression problem of SVMs is

achieved by using an alternative loss function, which must be modified to include a

distance measure. The SVM task usually involves with training and testing data which

consist of some data instances. Each instance in the training set contains one “target

value” and several “attributes”. The goal of SVMs is to produce a model which predicts

target value of data instances in the testing set which are given only the attributes.

Given a training set of training pairs (x1, y1),... ,(xl, yl), xi ∈ Rn, y ∈ R, with a linear

function,

f(x) =< ω, x > +b, (1)

The optimal regression function is given by the minimum of the functional,

φ(ω, ζ) =
1

2
ω.ω + C

∑

i

(ζ−i + ζ+
i ), (2)

Using a quadratic loss function,

Lquad(f(x) − y) = (f(x) − y)2, (3)

the solution is given by,

max
α,α∗

W (α, α∗) = max
α,α∗

−
1

2

l∑

i=1

l∑

j=1

(αi − α∗

i )(αj − α∗

j ) < xi, xj >

+

l∑

i=1

(αi − α∗

i )yi −
1

2C

l∑

i=1

(α2
i + (α2

i )
2), (4)

the resultant optimization problems is,

min
β

1

2

l∑

i=1

l∑

j=1

βiβj < xi, xi > −

l∑

j=1

βiyi +
1

2C

l∑

i=1

β2
i (5)
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with constraints,
l∑

i=1

βi = 0. (6)

To generalize to non-linear regression, we replace the dot product with a kernel function.

More information can be found in Steve’s tutorial (1998). In our work, we adopt the

Gaussian kernel function.

SVMs have been widely used in the area of machine learning due to its excellent

generalization performance, such as handwritten digit recognition and face detection. In

astronomy, SVMs have been applied to identifying red variables (Williams et al. 2004),

clustering astronomical objects (Zhang, Zhao 2004), and classifying AGN from stars and

normal galaxies (Zhang, Cui, Zhao 2002).

Several software implementations of the SVM algorithm are accessible on the

web. Due to their robustness, the ability of handling large amounts of data, and

the regression time, we use SVM Light for our study. SVM Light is fast optimized

SVM algorithm, which is implemented in C language. It can deal with many thou-

sands of support vectors, handle hundreds/thousands of training examples, and pro-

vide several standard kernel functions. The details about SVM Light can be found at

http://www.cs.cornell.edu/People/tj/svm light/.

3.2 Kernel Regression

Kernel regression (KR) belongs to the family of instance-based learning algorithms

(Watson 1964; Nadaraya 1964), which simply store some or all of the training examples

and do not perform any kind of generalization of the given samples and “delay learning”

till prediction time. Given a query point xq, a prediction is obtained using the training

samples that are “most similar” to xq. Similarity is measured by means of a distance

metric defined in the hyper-space of V predictor variables. Kernel regressors obtain the

prediction for a query point xq, by a weighted average of the y values of its neighbors.

The weight of each neighbor is calculated by a function of its distance to xq (called the

kernel function). These kernel functions give more weight to neighbors that are nearer to

xq. The notion of neighborhood (or bandwidth) is defined in terms of distance from xq.

The prediction for query point xq is obtained by

yq =

N∑
i=1

K(
D(xi,xq)

h
) × yi

N∑
i=1

K(
D(xi,xq)

h
)

(7)

where D(.) is the distance function between two instances; K(.) is a kernel function;

h is a bandwidth value; (xi, yi) are training samples. In this paper, we use Euclidian

distance and Gaussian kernel function. xi is the feature for each training sample, yi is

the spectroscopic redshift for each training set sample, yq is the redshift of each query

sample.

http://www.cs.cornell.edu/People/tj/svm_light/
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One important design decision when using kernel regression is the choice of the band-

width h. The larger h results in the flatter weight function curve, which indicates that

many points of training set contribute quite evenly to the regression. As the h tends to

infinity, the predictions approach the global average of all points in the database. If the

h is very small, only closely neighboring data points make a significant contribution. If

the data are relatively noisy, we expect to obtain smaller prediction errors with a rela-

tively larger h. If the data are noise free, then a small h will avoid smearing away fine

details in the function. There exists mature algorithms for choosing the bandwidth for

kernel regression that minimize a statistical measure of the difference between the true

underlying distribution and the estimated distribution. Usually bandwidth selection in

regression is done by cross-validation (CV).

In this work, we chose the bandwidth using cross-validated method. Cross-validation

is the statistical method of dividing a sample of data into subsets such that the analysis

is initially performed on a single subset, while the other subset(s) are retained for sub-

sequent use in confirming and validating the initial analysis. M -fold cross-validation is

one important cross-validation method. The data are divided into m subsets of (approx-

imately) equal size. Each time, one of the m subsets is used as the test set and the other

m − 1 subsets are put together to form a training set for a given bandwidth. Then the

average error across all m trials is computed (Zhang, Zhao 2007). Here we adopt 10-fold

cross-validation for the bandwidth choice dividing the samples into 10 subsets, then 9

subsets of 10 subsets are taken as training set and the rest subset as testing set for ten

times. The optical bandwidth is indicated by the bandwidth with the minimum of average

errors. In Table 2, we apply KR with 7-color (u−g, g−r, r− i, i−z, z−J, J−H, H−Ks)

and spectra redshifts as an input pattern, taking it as an example to illustrate the rela-

tionship between bandwidth (h) and cross-validated value (CV). It is obvious that the

optimal bandwidth h is 0.045 when cross-validated value arrives at the minimum 4.33.

Table 2 The relationship between bandwidth (h) and cross-validated value

(CV).

h 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.06

CV(×10−5) 4.77 5.03 4.86 4.64 4.45 4.35 4.33 4.35 4.41 4.77

4 RESULT AND DISCUSSION

One advantage of the empirical training set approach to photometric redshift estima-

tion is that additional parameters can be easily incorporated. More parameters (e.g.

petro50 r, petro90 r, fracDeV r, etc.) may be taken as inputs. In order to study which

parameters influence the accuracy of predicting photometric redshifts, we probe different
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input patterns to estimate photometric redshifts. We randomly divide the sample into

two parts: 41,388 for training and 20,695 for test, and apply them to train and test kernel

regression (KR) and support vector machines (SVMs). The rms deviations of predicting

photometric redshifts with KR and SVMs for different situations are listed in Table 3.

When using SVMs to estimate photometric redshifts, the performances of colors are

the best of all cases. The result based on 4-color input pattern (u−g, g−r, r−i, i−z) has

the same best accuracy (σrms=0.0273) as that based on 7-color input pattern (u− g, g−

r, r−i, i−z, z−J, J−H, H−Ks). The accuracy with seven colors and r magnitude is better

than that with four colors and r magnitude, and than that with seven magnitudes. The

performance taking five magnitudes as input is not as well as that of seven magnitudes.

Since the accuracy with four colors is best, we consider more parameters besides four

colors to probe whether the performance improves. As shown by Table 3, the accuracy

adding fracDev r or petro50 r and petro90 r decreases. Obviously the more parameters

considered, the performance is not always better, sometimes even worse. The results

have shown that there is no improvement in the use of more parametric data from SDSS

and 2MASS catalogs. Hence we would not recommend its use because it decreases the

sample size markedly and does not decrease the rms errors in the photometric redshift

prediction.

Table 3 The dispersions of photometric redshift prediction using KR and

SVMs.

method KR SVMs

Input Parameters σrms(optimal bandwidth) σrms

u, g, r, i, z 0.0208 (h = 0.025) 0.0291

u, g, r, i, z, J, H,Ks 0.0254 (h = 0.015) 0.0278

u − g, g − r, r − i, i − z 0.0193 (h = 0.020) 0.0273

u − g, g − r, r − i, i − z, r 0.0196 (h = 0.025) 0.0284

u − g, g − r, r − i, i − z, z − J, J − H,H − Ks 0.0210 (h = 0.045) 0.0273

u − g, g − r, r − i, i − z, z − J, J − H,H − Ks, r 0.0235 (h = 0.055) 0.0275

u − g, g − r, r − i, i − z, fracDev r 0.0192 (h = 0.020) 0.0306

u − g, g − r, r − i, i − z, petro50 r, petro90 r 0.0218 (h = 0.040) 0.0330

NOTE.—-petro50 r is Petrosian 50% radius in r band, petro90 r is Petrosian 90% radius in r

band, fracDeV r is fracDeV in r band.

For KR, the best input patterns includes four colors and fracDev r (u − g, g − r,

r− i, i−z, fracDev r) when the rms error amounts to 0.0192. The better input patterns

are four colors or four colors and r magnitude when rms error are 0.0193 or 0.0196,

respectively. Then the good input pattern includes five magnitudes when the rms scatter

is 0.0208. The result with only seven colors is better than that with seven colors and
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r magnitude but worse than that with five magnitudes. For four colors as inputs, the

performance of kernel regression decreases when adding petro50 r and petro90 r, except

for fracDev r. As a result, when applying kernel regression to predicting photometric

redshifts, we find the parameters except magnitudes and color indexes, such as petro50 r

and petro90 r, are void, however fracDev r is important and effective possibly because

fracDev r is closely related to galaxy type. When implementing KR, the enlargement of

bandwidth may cause less loss of estimation. In our experiments, the fraction of loss is

less than 1%. Table 3 also indicates that the optimal bandwidth is different for different

input patterns.

To clearly show the performances of KR and SVMs, we take the best and worst results

for both approaches, and plot the known spectroscopic redshifts against the calculated

photometric redshifts from the test data, shown in Figures 1-2. Figure 1 depicts the

results for KR, while Figure 2 gives the results for SVMs. In Figures 1 and 2, the left

panel shows the best input pattern, and the right panel plots the worst input pattern. It

is clear that, for SVMs, the estimation of photometric redshifts is high for low-redshift

galaxies. However, the performance of KR is very satisfactory.

Fig. 1 Spectroscopic redshift versus calculated photometric redshift compar-

isons using 20,695 test galaxies from the SDSS DR5 and 2MASS databases

with kernel regression. Left figure shows that the best input pattern with

σrms=0.0192 is u − g, g − r, r − i, i − z, fracDev r. Right figure indicates that

the worst input pattern with σrms=0.0254 is u, g, r, i, z, J, H, Ks.

So far there has been much work on approaches to photometric redshift estimation.

To compare the performance of various methods, we list the rms scatters of photomet-
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Fig. 2 Spectroscopic redshift versus calculated photometric redshift compar-

isons using 20,695 test galaxies from the SDSS DR5 and 2MASS databases

with SVMs. Left figure shows that the best input pattern with σrms=0.0273 is

u− g, g − r, r − i, i− z. Right figure indicates that the worst input pattern with

σrms=0.0330 is u − g, g − r, r − i, i − z, petro50 r, petro90 r.

ric redshifts from different work in Table 4. Because the accuracy strongly depends on

the data used, we only give a coarse comparison. As shown in Table 4, kernel regres-

sion is comparable to artificial neural networks (ANNs), better than SVMs (Wadadekar

2005), Kd-tree (Csabai et al. 2003) and polynomial (Connolly et al. 1995), and superior

to CWW and Bruzual-Charlot (Csabai et al. 2003). Nevertheless, each method has its

strongness and weakness. Kernel regression belongs to the instance-based learning fam-

ily. It is a kind of memory-based method and learns until prediction. Therefore kernel

regression consumes much large memory of a computer in despite of high accuracy. If

using ANNs, one should be familiar with the network architecture and make a decision

about how many input nodes or hidden lays they have. The more complex networks it

has, the more accurate result it earns. However, SVMs may use different kernel functions

instead of different ANN networks. As long as you choose the appropriate kernel func-

tion and parameters, the rms scatter will decrease significantly. Moreover the classical

problems such as multi-local minima, curse of dimensionality and overfitting in ANNs,

seldom occur in SVMs. Nevertheless, SVMs need prior knowledge to adjust parameters.

Degeneration between parameters makes the regulating process more complicated. Even

though linear or non-linear polynomial regression is easy to implement and communicate

with astronomers, the systematic deviation is large (Brunner et al. 1997; Wang et al.

1998; Budavári et al. 2005; Hsieh et al. 2005; Connolly et al. 1995). Csabai et al. (2000)
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have represented a hybrid method, which is a combination of template-based and em-

pirical training set. The hybrid one can reconstruct the continuum spectra of galaxies

directly from a set of multicolor photometric observations and spectroscopic redshifts.

Even though the dispersion of photometric redshifts using this combination technique

was significantly improved, it is still worse than empirical ones.

Table 4 Photometric redshift accuracies for various approaches

Method Name σrms Data set Input parameters

CWW1 0.0666 SDSS-EDR ugriz

Bruzual-Charlot1 0.0552 SDSS-EDR ugriz

Interpolated1 0.0451 SDSS-EDR ugriz

Polynomial1 0.0318 SDSS-EDR ugriz

Kd-tree1 0.0254 SDSS-EDR ugriz

ClassX2 0.0340 SDSS-DR2 ugriz

SVMs3 0.0270 SDSS-DR2 ugriz

ANNs4 0.0229 SDSS-DR1 ugriz

Polynomial5 0.0250 SDSS-DR1,GALEX ugriz + nuv

Kernel Regression 0.0208 SDSS-DR5,2MASS ugriz

0.0193 SDSS-DR5,2MASS color∗

SVMs 0.0273 SDSS-DR5,2MASS color∗

NOTE.—- SDSS-EDR = Early Data Release (Stoughton et al. 2002),

SDSS-DR1 = Data Release 1 (Abazajian et al. 2003),

SDSS-DR2 = Data Release 2 (Abazajian et al. 2004),

SDSS-DR5 = Data Release 5 (Adelman-McCarthy et al. 2007).

color∗ is the color indexes, i.e. u − g, g − r, r − i, i − z.

(1) Csabai et al. 2003; (2) Suchkov, Hanisch, Margonet 2005;

(3) Wadadekar 2005; (4) Collister, Lahav 2004; (5) Budavári et al. 2005.

5 CONCLUSIONS

We utilize two novel methods, which are Support Vector Machines (SVMs) and Kernel

Regression (KR), to estimate photometric redshifts using the cross-matched data from

SDSS DR5 and 2MASS. We compare the performances of estimating photometric red-

shifts with SVMs and KR for different input patterns. Our experiments show that only

when the appropriate parameters are chosen, the accuracy of SVMs or KR can improve.

Adding additional bandpasses from the infrared (2MASS) contribute little information

due to the small size of dataset. In addition, there is no improvement in the use of the

parameters (petro50 r, petro90 r, fracDev r) related to angular size and morphology.
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The accuracy of photometric redshift produced by SVMs is slightly less than that of

ANNs, as good as linear or quadratic regression, and clearly much better than template

fitting one. In appropriate situations, SVMs will be a highly competitive tool for deter-

mining photometric redshifts in terms of speed and applications. However, it does depend

on the existence of a large and representative training sample. As a kind of empirical

photometric redshift estimations, SVMs are impossible in extrapolating to the region

that is not well sampled by training set. Moreover a potential solution to the problem

of increasing the photometric redshift accuracy is to choose the more appropriate ker-

nel function, and to consider the feature selection/extraction methods in the process of

parameter selection.

The dispersion of photometric redshift estimation by kernel regression is fairly fa-

vorable. Compared to other training-set methods, kernel regression does not need any

effort on training. In addition, kernel regression ameliorates a major problem of empiri-

cal training-set methods. Even though a few high-redshift galaxies exists in the sample,

kernel regression can appropriately adjust bandwidth to obtain much more accurate red-

shifts. Therefore, kernel regression can extrapolate to regions where the input parameters

are not well represented by the training data. With large and deep photometric surveys

carried out, it seems that kernel regression will show its superiority. In the future work

we will explore adaptive bandwidth or other kinds of distance metric for kernel regression

on the regression problems.
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